翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

genetic linkage : ウィキペディア英語版
genetic linkage

Genetic linkage is the tendency of alleles that are located close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Genes whose loci are nearer to each other are less likely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be genetically ''linked''. In other words, the nearer two genes are on a chromosome, the lower is the chance of a swap occurring between them, and the more likely they are to be inherited together.
==Discovery==
Genetic linkage was first discovered by the British geneticists William Bateson, Edith Rebecca Saunders and Reginald Punnett shortly after Mendel's laws were rediscovered.〔(Discovery and Types of Genetic Linkage ), from Scitable〕〔William Bateson, E. R. Saunders, R. C. Punnett (1904) "Report II. Experimental studies in the physiology of heredity" Reports to the Evolution Committee of the Royal Society. http://archive.org/details/RoyalSociety.ReportsToTheEvolutionCommittee.ReportIi.Experimental〕 The understanding of genetic linkage was expanded by the work of Thomas Hunt Morgan. Morgan's observation that the amount of crossing over between linked genes differs led to the idea that crossover frequency might indicate the distance separating genes on the chromosome.
Alfred Sturtevant, a student of Morgan's, first developed genetic maps, also known as linkage maps. Sturtevant proposed that the greater the distance between linked genes, the greater the chance that non-sister chromatids would cross over in the region between the genes. By working out the number of recombinants it is possible to obtain a measure for the distance between the genes. This distance is expressed in terms of a genetic map unit (m.u.), or a centimorgan and is defined as the distance between genes for which one product of meiosis in 100 is recombinant. A recombinant frequency (RF) of 1% is equivalent to 1 m.u. But this equivalence is only a good approximation for small percentages; the largest percentage of recombinants cannot exceed 50%, which would be the situation where the two genes are at the extreme opposite ends of the same chromosomes. In this situation, any crossover events would result in an exchange of genes, but only an odd number of crossover events (a 50-50 chance between even and odd number of crossover events) would result in a recombinant product of meiotic crossover. A statistical interpretation of this is through the Haldane mapping function or the Kosambi mapping function, among others. A linkage map is created by finding the map distances between a number of traits that are present on the same chromosome, ideally avoiding having significant gaps between traits to avoid the inaccuracies that will occur due to the possibility of multiple recombination events.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「genetic linkage」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.